| Topic | Writing chemical
 equations | Level
 Students are able to construct chemical equations by:
 Outcomes
 atudents aged 11-16) |
| :--- | :--- | :--- | :--- |
| a. considering the formulae of the reactants and products
 b. balancing reactants and products | | |
| Information
 for teachers | It is absolutely vital that students are able to understand the language
 of chemical equations, if they are going to enjoy and thrive in this
 subject. | |
| The purpose of this exercise is to diagnose whether students can write
 chemical equations. Before using this worksheet make sure that
 students have studied bonding, chemical formulae, state symbols and
 balancing equations. Where students struggle to complete the table on | | |
| page 3, you can provide feedback to close any specific gaps in their | | |
| understanding. | | |

Understanding the language of chemistry

When sodium metal reacts with chlorine gas, solid sodium chloride is produced.
Let's write a chemical equation so that we can properly see what is happening.

1. Step one: we must write the chemical formula for each reactant and product. To help us do this we need to know if each substance is ionic, covalent or metallic.

$$
\mathrm{Na}+\mathrm{Cl}_{2} \rightarrow \mathrm{NaCl}
$$

Ionic compounds (metal+non-metal) carry no overall charge. The total charge of the positive ions must equal the total charge of the negative ions e.g. $\mathrm{NaCl}, \mathrm{CaCO}_{3}, \mathrm{CuSO}_{4}$

Metallic elements are written using the element symbol e.g. Na or Mg
Atoms in simple covalent substances (non-metal +non-metal) share electrons so that each atom has either 2 or 8 electrons in their outer shell e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{Cl}_{2}$
2. Step two: we must add the correct state symbols.

- ionic substances are (s) or (aq) at room temperature if dissolved in water
- metals are (s) at room temperature except mercury - this is a liquid
- simple covalent substances are (g) or (l) at room temp. or (aq) if dissolved in water
- giant covalent substances are (s) at room temperature e.g. diamond and graphite

$$
\mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{~s})
$$

3. Step three: we must balance the equation to make sure there are the same number of each type of atom on either side of the arrow. We cannot change the formula of a chemical - we can only change how many we have.

$$
\mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaCl}(\mathrm{~s})
$$

Step 1 - elements	$\mathbf{N a}$	$\mathbf{C l}$	Na	Cl	Balanced?	Comment
Number of atoms	1	2	1	1	No	Cl not balanced

$$
\mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}(\mathrm{~s})
$$

Step 2 - elements	Na	Cl	Na	Cl	Balanced?	Comment
Number of atoms	1	2	2	2	No	Na not balanced

$$
2 \mathrm{Na}(\mathrm{~s})+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}
$$

Step 3- elements	$\mathbf{N a}$	$\mathbf{C l}$	$\mathbf{N a}$	$\mathbf{C l}$	Balanced?	Comment
Number of atoms	2	2	2	2	Yes	Balanced!

Complete the table

Mistake!!	This equation is wrong because...	This is the correct chemical equation
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$	Chlorine is diatomic and does not exist as single atoms.	
$\mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaO}_{2}(\mathrm{~s})$		$4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	State symbols are wrong. Oxygen is a gas at room temperature and not a solid.	
$\mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s})$	The equation is not balanced. There are more oxygen atoms in the reactants (2) than in the products (1).	
$\mathrm{H}(\mathrm{g})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{HCl}^{2}(\mathrm{~g})$	$\mathrm{H} 2(\mathrm{~g})+\mathrm{Cl}(\mathrm{g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$	

www.thescienceteacher.co.uk | resources for science teachers who like to think

Mistake!!	This equation is wrong because...	This is the correct chemical equation
$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$	Chlorine is diatomic and does not usually exist as single atoms.	$\mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{MgCl}_{2}(\mathrm{~s})$
$\mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaO}_{2}(\mathrm{~s})$	The formula of sodium oxide is incorrect. Sodium forms +1 ions and oxide forms -2 ions. We need two sodium ions for every oxide ion. The equation then needs to be balanced.	$4 \mathrm{Na}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})$
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~s}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$	State symbols are wrong. Oxygen is a gas at room temperature and not a solid.	$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CaO}(\mathrm{s})$	The equation is not balanced. There are more oxygen atoms in the reactants (2) than in the products (1)	$2 \mathrm{Ca}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{s})$

