Торіс	Writing chemical	Level	GCSE (or any other course for			
	equations		students aged 11-16)			
Outcomes	Students are able to construct chemical equations by:					
	a. consideri b. assigning c. balancing	ng the form state symbo greactants a	ulae of the reactants and products ols nd products			
Information for teachers	It is absolutely vital that students are able to understand the language of chemical equations, if they are going to enjoy and thrive in this subject.					
	The purpose of this exe chemical equations. Bef students have studied <u>balancing equations</u> . W page 3, you can provide understanding.	rcise is to di fore using th <u>bonding</u> , <u>che</u> here studen feedback to	agnose whether students can write his worksheet make sure that <u>emical formulae, state symbols and</u> ts struggle to complete the table on o close any specific gaps in their			
	Page 2 is a summary of mindful that as student no longer hold true.	some 'rules' s progress o	for writing equations, but please be nto A Level some of these rules will			

When sodium metal reacts with chlorine gas, solid sodium chloride is produced.

Let's write a chemical equation so that we can properly see what is happening.

1. Step one: we must write the chemical formula for each reactant and product. To help us do this we need to know if each substance is ionic, covalent or metallic.

$$Na + Cl_2 \rightarrow NaCl$$

Ionic compounds (metal+non-metal) carry no overall charge. The total charge of the positive ions must equal the total charge of the negative ions e.g. NaCl, CaCO₃, CuSO₄

Metallic elements are written using the element symbol e.g. Na or Mg

Atoms in simple covalent substances (non-metal +non-metal) share electrons so that each atom has either 2 or 8 electrons in their outer shell e.g. H_2O , NH_3 , Cl_2

- 2. Step two: we must add the correct state symbols.
 - ionic substances are (s) or (aq) at room temperature if dissolved in water
 - metals are (s) at room temperature except mercury this is a liquid
 - simple covalent substances are (g) or (l) at room temp. or (aq) if dissolved in water
 - giant covalent substances are (s) at room temperature e.g. diamond and graphite

 $Na(s) + Cl_2(g) \rightarrow NaCl(s)$

3. Step three: we must balance the equation to make sure there are the same number of each type of atom on either side of the arrow. We cannot change the formula of a chemical – we can only change how many we have.

$Na(s) + Cl_2(g) \rightarrow NaCl(s)$

Step 1 – elements	Na	Cl	Na	Cl	Balanced?	Comment
Number of atoms	1	2	1	1	No	Cl not balanced

$Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

Step 2 - elements	Na	Cl	Na	Cl	Balanced?	Comment
Number of atoms	1	2	2	2	No	Na not balanced

$2Na(s) + Cl_2(g) \rightarrow 2NaCl(s)$

Step 3– elements	Na	Cl	Na	Cl	Balanced?	Comment
Number of atoms	2	2	2	2	Yes	Balanced!

www.thescienceteacher.co.uk | resources for science teachers who like to think

Complete the table

Mistake!!	This equation is wrong because	This is the correct chemical equation
$Mg(s) + Cl(g) \rightarrow MgCl_2(s)$	Chlorine is diatomic and does not exist as single atoms.	
$Na(s) + O_2(g) \rightarrow NaO_2(s)$		$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$
$C(s) + O_2(s) \rightarrow CO_2(g)$	State symbols are wrong. Oxygen is a gas at room temperature and not a solid.	
$Ca(s) + O_2(g) \rightarrow CaO(s)$	The equation is not balanced. There are more oxygen atoms in the reactants (2) than in the products (1).	
$H(g) + Cl(g) \rightarrow HCl(g)$		$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
$N_2(g) + H_2(g) \rightarrow NH_3(g)$	The equation is not balanced as there is one extra nitrogen atom and one less hydrogen atom in the reactants compared to the products.	
$CH_4 + O_2 \rightarrow CO_2 + H_2O$	This equation is not balanced for oxygen and hydrogen atoms and there are no state symbols.	
$Al(s) + Br(g) \rightarrow AlBr(s)$		
$NaOH + H_2SO_4 \rightarrow NaSO_4 + H_2O$	No state symbols are written and the formula of the salt is incorrect. Sodium forms +1 ions and sulphate forms -2 ions. This would mean this compound would have a charge of -1 which would be wrong.	

www.thescienceteacher.co.uk | resources for science teachers who like to think

Mistake!!	This equation is wrong because	This is the correct chemical equation
$Mg(s) + Cl(g) \rightarrow MgCl_2(s)$	Chlorine is diatomic and does not usually exist as single atoms.	$Mg(s) + Cl_2(g) \rightarrow MgCl_2(s)$
$Na(s) + O_2(g) \rightarrow NaO_2(s)$	The formula of sodium oxide is incorrect. Sodium forms +1 ions and oxide forms -2 ions. We need two sodium ions for every oxide ion. The equation then needs to be balanced.	$4Na(s) + O_2(g) \rightarrow 2Na_2O(s)$
$C(s) + O_2(s) \rightarrow CO_2(g)$	State symbols are wrong. Oxygen is a gas at room temperature and not a solid.	$C(s) + O_2(g) \rightarrow CO_2(g)$
$Ca(s) + O_2(g) \rightarrow CaO(s)$	The equation is not balanced. There are more oxygen atoms in the reactants (2) than in the products (1)	$2Ca(s) + O_2(g) \rightarrow 2CaO(s)$
$H(g) + Cl(g) \rightarrow HCl(g)$	Chlorine and hydrogen are diatomic.	$H_2(g) + Cl_2(g) \rightarrow 2HCl(g)$
$N_2(g) + H_2(g) \rightarrow NH_3(g)$	The equation is not balanced as there is one extra nitrogen atom and one fewer hydrogen atom in the reactants compared to the products.	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
$CH_4 + O_2 \rightarrow CO_2 + H_2O$	This equation is not balanced for oxygen and hydrogen atoms and there are no state symbols.	$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$
$Al(s) + Br(g) \rightarrow AlBr(s)$	The formula of aluminium bromide is incorrect. Bromine should be diatomic and is a liquid.	$2Al(s) + 3Br_2(l) \rightarrow 2AlBr_3(s)$
$NaOH + H_2SO_4 \rightarrow NaSO_4 + H_2O$	No state symbols are written and the formula of the salt is incorrect. Sodium forms +1 ions and sulphate forms -2 ions. This would mean this compound would have a charge of -1 which would be wrong.	2NaOH(aq) + H ₂ SO ₄ (aq) → Na ₂ SO ₄ (aq) + 2H ₂ O (l)

www.thescienceteacher.co.uk | resources for science teachers who like to think