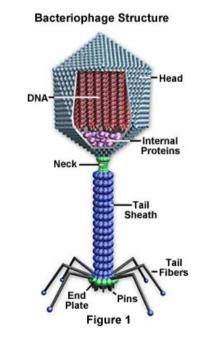

Торіс	Microbes and Scale	Level	GCSE (or any course for students aged 11-16)
Outcomes	 To convert between μm, mm and mm To build scale models of different microbes To consider the biological advantages of being small 		

www.thescienceteacher.co.uk | resources for science teachers who like to think

Microorganisms and Scale


Just How Small are They?

1 km = 1000 m

- 1 m = 100 cm
- 1 cm = 10 mm
- 1mm = 1000 µm (micrometre)

Q1) How many µm in 2 mm?

Q2) How many µm in 1 cm?

Object	Approximate Length (µm)	Scaled Length (cm/mm)
Ant	1000	100 cm
Human Hair	100	
Human Cell	10	
Yeast Cell	5	
Bacterium	1.0	
Polio Virus	0.02	

Assume 1000 micrometres = 1 metre

Make 2D scale drawings of each of the objects so you can get an idea of just how small they are.

Object	Approximate Length (µm)	Scaled Length (cm/mm)
Ant	1000	100 cm
Human Hair	100	10 cm
Human Cell	10	1 cm
Yeast Cell	5	0.5 cm
Bacterium	1.0	1 mm
Polio Virus	0.02	0.2 μm

Assume 1000 micrometres = 1 metre

Make 2D scale drawings of each of the objects so you can get an idea of just how small they are. What have you realised about microbes and their size?

How does their small size make them successful?